Learning Transferable Features with Deep Adaptation Networks

نویسندگان

  • Mingsheng Long
  • Yue Cao
  • Jianmin Wang
  • Michael I. Jordan
چکیده

Recent studies reveal that a deep neural network can learn transferable features which generalize well to novel tasks for domain adaptation. However, as deep features eventually transition from general to specific along the network, the feature transferability drops significantly in higher layers with increasing domain discrepancy. Hence, it is critical to formally reduce the dataset bias and enhance the transferability in task-specific layers. In this paper, we propose a new Deep Adaptation Network (DAN) architecture, which generalizes deep convolutional neural networks to the domain adaptation scenario. In DAN, hidden representations of all task-specific layers are embedded in a reproducing kernel Hilbert space where the mean embeddings of different domain distributions can be explicitly matched. The domain discrepancy is further reduced using an optimal multi-kernel selection method for mean embedding matching. DAN can learn transferable features with statistical guarantees, and can scale linearly by unbiased estimate of kernel embedding. Comprehensive experiment shows that the proposed architecture yields state-of-the-art results on standard domain adaptation benchmarks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Domain Adaptation with Residual Transfer Networks

The recent success of deep neural networks relies on massive amounts of labeled data. For a target task where labeled data is unavailable, domain adaptation can transfer a learner from a different source domain. In this paper, we propose a new approach to domain adaptation in deep networks that can jointly learn adaptive classifiers and transferable features from labeled data in the source doma...

متن کامل

Learning Multiple Tasks with Deep Relationship Networks

Deep neural networks trained on large-scale dataset can learn transferable features that promote learning multiple tasks for inductive transfer and labeling mitigation. As deep features eventually transition from general to specific along the network, a fundamental problem is how to exploit the relationship structure across different tasks while accounting for the feature transferability in the...

متن کامل

Conditional Adversarial Domain Adaptation

Adversarial learning has been successfully embedded into deep networks to learn transferable features for domain adaptation, which reduce distribution discrepancy between the source and target domains and improve generalization performance. Prior domain adversarial adaptation methods could not align complex multimode distributions since the discriminative structures and inter-layer interactions...

متن کامل

Deep Visual Domain Adaptation: A Survey

Deep domain adaption has emerged as a new learning technique to address the lack of massive amounts of labeled data. Compared to conventional methods, which learn shared feature subspaces or reuse important source instances with shallow representations, deep domain adaption methods leverage deep networks to learn more transferable representations by embedding domain adaptation in the pipeline o...

متن کامل

A New Method for Detecting Ships in Low Size and Low Contrast Marine Images: Using Deep Stacked Extreme Learning Machines

Detecting ships in marine images is an essential problem in maritime surveillance systems. Although several types of deep neural networks have almost ubiquitously used for this purpose, but the performance of such networks greatly drops when they are exposed to low size and low contrast images which have been captured by passive monitoring systems. On the other hand factors such as sea waves, c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015